细胞生物学是生命科学重要的基础学科之一,是分子生物学与个体生物学之间承上启下的学科。本课程主要是让学生了解细胞的基本结构及其功能,熟悉细胞生命活动的基本特点及其分子机制,并了解当前细胞生物学的发展动态和国际前沿知识。本课程为三学分,四十五个课时。课程采用中英文双语教学,即授课用中文,而PPT,教材及考试都为英文。
我们期待通过本课程的双语教学,使同学们能熟练掌握细胞生物学的基本概念和基本原理。熟悉相关领域内的关键词汇,提高同学们的阅读英文文献的能力,使同学们获得运用所学知识去分析科技文献中数据,跟踪本学科领域内的最新进展的能力。
本课程的学习过程包含:观看讲课视频、完成课后作业及讨论,参加期中,期末考试。
课程学习的最终成绩由一下几个部分组成:
(1) 课堂测试及课后作业成绩占40%
(2)期中考试成绩占30%
(3) 期末考试成绩占30%
在第九周进行期中考试,第十七周进行期末考试,期中考试前的内容不再考察。
1.Introduction of Molecular Cell Biology
1.1 Research objectives of the cell biology
1.2 Microscope and Cell theory
1.3 Major events in cell biology
2.Culturing,visualizing cells
2.1 Growing Cells in Culture
2.2 Monoclonal antibodies
2.3 Fluorescence Microscopy
2.4 Flow cytometry
2.5 Spinning Disk Confocal Microscopy
2.6 FRAP and FRET
2.7 RNA interference
3.Biomembrane structure and Transmembrane transport of ions and small molecules
3.1 The structrure of plasmic membrane
3.2 The lipid bilayer:Composition and structural organization
3.3 Forms of lipid molecules exist in water
3.4 Lipids Movement in biomembrane
3.5 Structure of Membrane Proteins
3.6 Synthesis of Phospholipids and Intracellular Movement
3.7 Overview of Transmembrane transport
3.8.Facilitated Transport of Glucose and Water
3.9 ATP –powered pumps
3.10 Na+/k+ pump
3.11 Ca2+ pump
3.12 K+ channel and the Resting membrane potencial
3.13 Cotransport by Symporters and Antiporters
3.14 Transcellular transport
4. Cellular Energetics
4.1 Overview of aerobic oxidation
4.2 Structure of Mitochondria
4.3 Mitochondrial Oxidation of Fatty Acids Generates ATP
4.4 The Electron Carriers and Electron Transport Chain
4.5 The Electron Transport and Generation of the Proton-Motive Force
4.6 Chemiosmotic theory and Endosymbiont hypothesis
4.7 Harnessing the Proton-Motive Force to synthesize ATP
5. Moving proteins into membrane and organells
5.1 Targeting Proteins to and Across the ER Membrane
5.2 Insertion of single-pass Proteins into the ER
5.3 Insertion of Multipass Proteins into the ER
5.4 Protein Glycosylation and Folding in the ER
5.5 Formation of disulfide bonds in the ER
5.6 Protein Quality Control in the ER
5.7Targeting of Proteins to Mitochondria
5.8 Targeting of Peroxisomal Proteins
6.Vesicular traffic,secretion and endocytosis
6.1 Molecular Mechanisms of Vesicle Budding and Fusion
6.2 Early Stages of the Secretory Pathway
6.3 Later Stages of the Secretory Pathway
6.4 Receptor-Mediated Endocytosis
6.5The structure and functions of Lysosomes
6.6 Directing Membrane Proteins and Cytosolic Materials to the Lysosome
7.Signal transduction
7.1 Brief Introduction of Cell Communication
7.2 Signaling Molecules and Receptors
7.3 G Proteins and G Protein-coupled Receptors (GPCR)
7.4 GPCR Mediated Signaling pathways
8.Signaling pathways that control gene activity
8.1 Protein Tyrosine Kinases (RTKs) and RTK-Ras Signaling Pathway
8.2 Phosphoinositide Signaling Pathways
8.3 TGF-b Receptors and TGFb Signaling Pathways
8.4 Cytokine receptors and JAK-STAT Signaling Pathways
8.5 Signaling Pathways controlled by Ubiquitination
8.6 Integration of Multiple Signaling Pathways
9: I.Microfilaments: Actin Structures
9.1 Actin Filaments
9.2 Dynamic Assembly of Actin Filaments
9.3 Actin-Based Cellular Structures
9.4 Myosins and Myosin-Powered Movements
9.5 Mechanisms of Cell Migration
10. II Microfilaments: Microtubules and Intermediate Filament
10.1 Structure and Organization of Microtubule
10.2 Regulation of Microtubule Dynamics
10.3 Microtubule-Based Motor Proteins
10.4 Intermediate Filaments
10.5 Coordination of Cellular Cytoskeleton
11.The Eukaryotic cell cycle
11.1. Overview of the cell cycle and its control
11.2. Model organisms and methods to study the cell cycle
11.3. CDK and Its Discovery
11.4. Regulation of CDK Activity
11.5. Commitment to the Cell Cycle and DNA Replication
11.6. Entry into Mitosis and Completion of Mitosi
11.7. Surveillance mechanisms in cell cycle regulation
11.8 Meiosis: A Special Type of Cell Division
12.Cell senescence and death I
12.1 Introduction of cell senescence
12.2 Theories and mechanisms of cell senescence
12.3 Physiological and pathological roles of cell senescence
Cell senescence and death II
12.4 Introduction of cell death
12.5 Mechanism of cell death
12.6 Physiological and pathological roles of cell death
13.Integrating cells into tissues
13.1 An Overview on Cell-Cell and Cell-Matrix Adhesion
13.2 Type of Cell Junctions and Anchoring Junction
13.3 Tight junctions and Gap junctions
13.4 ECMs of The Basal Lamina
13.5 ECMs of Connective tissu
14. Stem cells, cell asymmetry and cell death
14.1 Early metazoan developmnt and embryonic stem cells
14.2 Stem Cells and Niches in Multicellular Organism
14.3 Mechanisms of cell polarity and asymmetric cell division
本课程的授课对象为大学二年级学生,前期课程应已修完生物化学、有机化学等基础学科。
1. Molecular Cell Biology, 7th Edition, Harvey Lodish/Arnold Berk, etc., 2013, Macmillan Higher Education
2. Molecular Biology of The Cell, 6th Edition, Alberts B., et al., John Wilson/Tim Hunt, 2015, Garland Science