SPOC学校专有课程
Calculus I(微积分I)
第1次开课
开课时间: 2021年09月06日 ~ 2022年01月05日
学时安排: 3-5小时每周
当前开课已结束 已有 517 人参加
老师已关闭该学期,无法查看
spContent=源自欧美教学风格,采用原版经典英文教材《Thomas' Calculus》(第12版),全英文授课方式,给学习者带来不一样的微积分学习体验,有兴趣的同学来挑战吧!Welcome!
源自欧美教学风格,采用原版经典英文教材《Thomas' Calculus》(第12版),全英文授课方式,给学习者带来不一样的微积分学习体验,有兴趣的同学来挑战吧!Welcome!
—— 课程团队
课程概述

      微积分课程是理、工、管理等大学本科专业最重要的数学基础课程,为学生学习后续课程和进一步获取数学知识尊定基础,也是培养学生理性思维和创新能力的重要载体。各大学历来重视课程建设与教师队伍建设。

      2013年秋至今,电子科技大学为了格拉斯哥学院学生的教学与培养需要,开设了全英语微积分课程,选用的教材是英语原版经典教材《ThomasCalculus》(第12版)。授课方式为全英语教学,并按照欧美教学方式:注重以学生为中心、课内与课外相结合、教学与研究相结合、知识背景与理论基础相结合的教育创新模式。教师在课程中积极与学生互动,注重学生发现问题、解决问题能力的培养,同时讲解问题时留有充分的想象空间与练习环节,并附有丰富的参考资料和大量的例题习题。

      本课程系统地介绍了微积分的基础知识和基本方法,分为Calculus ICalculus II两个部分。Calculus I主要包含一元函数的极限理论,一元函数微分学和积分学,常微分方程;Calculus II主要包含多元函数微分学与积分学,向量场积分以及无穷级数理论。


成绩 要求

为积极响应国家低碳环保政策, 2021年秋季学期开始,中国大学MOOC平台将取消纸质版的认证证书,仅提供电子版的认证证书服务,证书申请方式和流程不变。

 

电子版认证证书支持查询验证,可通过扫描证书上的二维码进行有效性查询,或者访问 https://www.icourse163.org/verify,通过证书编号进行查询。学生可在“个人中心-证书-查看证书”页面自行下载、打印电子版认证证书。

 

完成课程教学内容学习和考核,成绩达到课程考核标准的学生(每门课程的考核标准不同,详见课程内的评分标准),具备申请认证证书资格,可在证书申请开放期间(以申请页面显示的时间为准),完成在线付费申请。

 

认证证书申请注意事项:

1. 根据国家相关法律法规要求,认证证书申请时要求进行实名认证,请保证所提交的实名认证信息真实完整有效。

2. 完成实名认证并支付后,系统将自动生成并发送电子版认证证书。电子版认证证书生成后不支持退费。


课程大纲

The First Week: 1 Introduction

1.1 Why study Calculus?

1.2 What is Calculus?

1.3 Why in English?

1.4 How to study Calculus?

The First Week: 2 Limits and Continuity

2.1 Rate of change and tangents to curves

2.2 Limit of a Function

2.3 Limit Laws

2.4 How  to Find Limits

The Second Week: 2 Limits and Continuity

2.6 The Precise Definition of Limit: A Example

2.5 The Precise Definition of Limit

The Second Week: 2 Limits and Continuity

2.7 One-sided Limits

2.8 Limit Involving sinx/x

2.9 Continuity

2.10 The Intermediate Value Theorem

2.11 Limits Involving Infinity

Unit Test-CH2

The Third Week: 3 Differentiation

3.1 Tangents of a curve

3.2 Derivative at a point

The Fourth Week: 3 Differentiation

3.3 Derivative as a function

3.4 Differentiable on an interval

3.5 When does a function not have a derivative

3.6 Differentiability implies continuity

The Fifth Week: 3 Differentiation

3.7 Differentiation rules I

3.8 Differentiation rules II

3.9 Derivatives of trigonometric functions

3.10 The Chain Rule

The Sixth Week: 3 Differentiation

3.11 L'Hopital's Law

3.12 Implicit differentiation

3.13 Linearization

3.14 Differential

Unit Test-CH3

The Seventh Week: 4 Applications of Derivatives

4.1 The extreme value

4.2 Where extreme values are located

4.3 Rolle's Theorem

4.4 Mean Value Theorem

4.5 Corollaries of Mean Value Theorem

The Eighth Week: 4 Applications of Derivatives

4.6 Monotonicity

4.7 Concavity

4.8 Curve sketching

4.9 Newton's method

4.10 Antiderivative and Indefinite integral

Unit Test-CH4

The Ninth Week: 5 Integration

5.1 Area and estimating by finite sum

5.2 Sigma notation

5.3 Limit of finite sum

5.4 Riemann sum and definite integral

The Tenth Week: 5 Integration

5.5  Integrable and nonintegrable functions

5.6 Area under curve

5.7 Mean Value Theorem of definite integral

5.8 Fundamental Theorem of Calculus-Part 1

5.9 Fundamental Theorem of Calculus-Part 2

The Eleventh Week: 6 Applications of Definite Integral

6.1 Cross-section method for volume

6.2 Disk method for volume

6.3 Washer method for volume

The Eleventh Week: 5 Integration

5.10 Relation between differentiation and integration

5.11 Total area

5.12 Substitution method for indefinite integral

5.13 Substitution method for definite integral

Unit Test-CH5

The Twelfth Week: 6 Applications of Definite Integral

6.4 Cylindrical shells for volume

6.5 Arc Length

6.6 Areas of surfaces of revolution

The Twelfth Week: 7 Transcendental Functions

7.1 Inverse function and its derivative

7.2 Natural Logarithm

7.3 Exponential function

7.4 Indeterminate Forms

7.5 Relative rate of growth

Unit Test-CH6,7

The Thirteenth Week: 8 Techniques of Integration

8.1 Integration by parts

8.2 Trigonometric integrals

8.3 Trigonometric substitution

8.4 Integration of rational functions

8.5 Improper integrals I

8.6 Improper integrals II

Unit Test-CH8

The Fourteenth Week: 9 Ordinary Differential Equations

9.1 General first-order differential equations and solutions

9.2 Separable differential equations

9.3 First-order linear differential equations

9.4 Bernoulli equations

9.5 Second-order linear differential equations-homogenous I

9.6 Second-order linear differential equations-homogenous II

9.7  Nonhomogenous differential equations

9.8 Euler equations

Unit Test-CH9

展开全部
预备知识

函数的概念及其基本性质

参考资料

《Thomas' Calculus》, G. B. Thomas, M. D. Weir and J. R. Hass, 12th edition, Pearson's company, 2010:       https://www.mypearsonstore.com/bookstore/thomas-calculus-9780321587992

源课程

该SPOC课程部分内容来自以上源课程,在源基础上老师进一步增加了新的课程内容

电子科技大学
1 位授课老师
费铭岗

费铭岗

教授

下载
下载

下载App