- 课堂交流区
- 帖子详情
101
回复
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 一个运动物体发出的声波的波长(声调)也有与此完全相似的变化。朝向你运动的物体发出的声波被压缩,因而声调较高;离你而去的物体的声波被拉伸,因而声调较低。任何遇到过急救车或其他警车警笛长鸣擦身而过的人对以上两种情况都不会陌生。声波和电磁辐射的上述现象都叫做多普勒效应。添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 一个运动物体发出的声波的波长(声调)也有与此完全相似的变化。朝向你运动的物体发出的声波被压缩,因而声调较高;离你而去的物体的声波被拉伸,因而声调较低。任何遇到过急救车或其他警车警笛长鸣擦身而过的人对以上两种情况都不会陌生。声波和电磁辐射的上述现象都叫做多普勒效应。</p>添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 </p><p>第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 </p>添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 </p><p>第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。</p><p><br ></p>添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 </p><p>第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。</p><p><br ></p>添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 一个运动物体发出的声波的波长(声调)也有与此完全相似的变化。朝向你运动的物体发出的声波被压缩,因而声调较高;离你而去的物体的声波被拉伸,因而声调较低。任何遇到过急救车或其他警车警笛长鸣擦身而过的人对以上两种情况都不会陌生。声波和电磁辐射的上述现象都叫做多普勒效应。添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 一个运动物体发出的声波的波长(声调)也有与此完全相似的变化。朝向你运动的物体发出的声波被压缩,因而声调较高;离你而去的物体的声波被拉伸,因而声调较低。任何遇到过急救车或其他警车警笛长鸣擦身而过的人对以上两种情况都不会陌生。声波和电磁辐射的上述现象都叫做多普勒效应。</p>添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀。 一个运动物体发出的声波的波长(声调)也有与此完全相似的变化。朝向你运动的物体发出的声波被压缩,因而声调较高;离你而去的物体的声波被拉伸,因而声调较低。任何遇到过急救车或其他警车警笛长鸣擦身而过的人对以上两种情况都不会陌生。声波和电磁辐射的上述现象都叫做多普勒效应。</p>添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀</p>添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀添加评论
-
<p>天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 </p>添加评论
-
不清楚添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。添加评论
-
天体的光或者其他电磁辐射可能由于三种效应被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是全部三种过程都被称为‘红移’。 第一类红移在1842年由布拉格大学的数学教授克里斯琴·多普勒做了说明,它是由运动引起的。当一个物体,比如一颗恒星,远离观测者而运动时,其光谱将显示相对于静止恒星光谱的红移,因为运动恒星将它朝身后发射的光拉伸了。类似地,一颗朝向观测者运动的恒星的光将因恒星的运动而被压缩,这意味着这些光的波长较短,因而称它们蓝移了。目前为止,恒星都出现红移,说明宇宙在膨胀添加评论
-
不理解添加评论
点击加载更多
到底啦~