课程概述

最优化理论是应用的原版教材“Introduction to optimization”,教学方式采用双语教学。本课程包含无约束最优化基础,常规线性搜索方法,无约束最优化算法如梯度法、牛顿法、拟牛顿法,线性规划如单纯型法以及修正单纯型法,线性约束最优化基础,非线性最优化方法如罚函数法,Lagrange 乘子法等。本课程先行课程需要数学分析、高等代数、矩阵理论、谱理论、计算方法等。考核方式为闭卷考试。

证书要求

考核方式:选择百分制,期末考试70%、课程作业10%、上课(缺席、迟到等)20%。

预备知识

数学分析、高等代数、矩阵理论、谱理论、计算方法等。

授课大纲

2.Real vector spaces and matrices (2hrs)

3.Transformations(1hrs)

3.1 Linear transformation

3.2 △Eigenvalues and eigenvectors

3.3 Orthogonal projections

3.4 △Quadratic forms

3.5 Matrix norms

4. Concepts from geometry (2hrs)

4.1 Line segments

4.2 ★Hyperplanes and linear varieties

4.3 Convex sets

4.4 Neighborhoods

4.5★ Polytopes and polyhedra

5. Elements of differential calculus (2hrs)

5.1 Differentiability

5.2 The derivative matrix

5.3 Chain rule

5.4△ Level sets and gradients

5.5 △Taylor series

6. Basics of unconstrained optimization (2hrs)

6.1 Introduction

6.2 ★Conditions for local minima

7.one-demensional search methods (3hrs)

7.1 Golden section search

7.2 Fibonacci search

7.3 ★Newton’s method

7.4 Secant method

7.5 Remarks on line search methods

8.Gradient methods (5hrs)

8.1 Introduction

8.2 ★Steepest descent method

8.3 △Analysis of gradient methods

9. Newton’s method (2hrs)

9.1 Introduction

9.2 △★Analysis of Newton’s method

10. Conjugate direction methods (6hrs)

10.1 Introduction

10.2 △The conjugate direction algorithm

10.3 △The conjugate gradient algorithm

10.4 The conjugate gradient algorithm for nonquadratic problems

11. Quasi-Newton methods (6hrs)

11.1 Introduction

11.2△ ★Approximating the inverse Hessian

11.3 ★The rank one correction formula

11.4 ★The DFP algorithm

11.5 ★The BFGS algorithm

13 Introduction to linear programming (5hrs)

13.1 A brief history of linear programming

13.2 △Simple example of linear programs

13.3 △Two-dimensional linear programs

13.4 Convex polyhedra and linear programming

13.5★ Standard-form linear programs

13.6 ★Basic solutions

13.7 ★Properties of basic solutions

13.8 A geometric view of linear programs

14. The simplex method (7hrs)

14.1 Solving linear equations using row operation

14.2 ★The canonical augmented matrix

14.3★ Updating the augmented matrix

14.4 ★The simplex algorithm

14.5 Matrix form of the simplex method

14.6★ The two-phase simplex method

14.7 ★The revised simplex method

17. Problems with equality constraints (6hrs)

17.1 Introduction

17.2 Problem formulation

17.3 △Tangent and normal spaces

17.4△ Lagrange conditions

17.5 △Second-order conditions

18. Problems with inequality (5hrs)

18.1★ Karush kuln tucker conditions

18.2 ★Second-order conditions

19. Algorithms for constrained optimization (5hrs)

19.1 ★Projected gradient methods

19.2 ★Penalty methods

20.The developments of optimization (5hrs)


参考资料

[1]袁亚湘,孙文瑜著,最优化理论与方法,科学出版社,2003.04。

[2]Jorge Nocedal, Stephen J. Wright, Numerical Optimization(数值最优化),科学出版社,2006.01(影印版)。