当前已经是大数据时代,数据库课程不能没有大数据管理,这是技术发展的呼唤,也是提高教学质量、加强人才技术素质的迫切要求。融合传统数据库关键技术与大数据最新进展,是数据库课程改革的必然趋势。为此,总结多年教学实践,内容按顺序分为四大部分。第一部分是基本概念和基础知识,包括第一章和第二章,涉及数据库系统、大数据、数据模型等基本概念都是为后面内容打基础。第二部分主要包括第三、四、五章,讲声明性语言(SQL),及其在应用环境中与高级语言的混合编程,以及数据保护。第三部分是第六章和第七章讲数据库设计并融入大数据思维。第六章主要是ER设计以及转换为关系,所以也涉及了关系设计或者说目标也是关系设计,但方法主要是从实体及联系的角度来做的;第七章讲关系设计,主要是从数据依赖角度来做的,而数据依赖实质上是属性及其联系。六七两章的目标是一致的,都是讲关系设计只是方法不同,并且大数据特征改变了原有数据库设计思想。第四部分是大数据新技术简介。
本课程直面技术最新发展,总结多年教学实践,深度梳理课程内容,主要特色包括:(1)以自然灾害应急系统/网络考试系统/智能推荐为案例,实施案例驱动的教学模式,技术最先进,概念最清晰。(2)在课程内容安排上,先讲语言,让学生通过上机使用,有直观了解,进而再讲设计,最后讲实现,由浅到深,由表及里,便于理解。(3)通过案例分析,解析传统数据库和大数据中数据管理技术的基本思想和特点,融合理论与实践,贯通技术思想与职业理念。(4)站在大数据管理的角度,讲述数据库设计和实现的新思想,在数据库设计和实现的讲述中融入大数据思维;针对各种数据密集系统的共性,讲述数据管理技术发展趋势,并对大数据管理进行简介。(5)以尽可能简单的例子凸显技术思想的本质。(6)纳入数据管理技术的最新发展,深度梳理课程知识点体系,研磨了与信息安全、操作系统、数据结构、组成原理等相关课程的关系,实现无缝平滑衔接。(7)特别是梳理了数据保护知识点体系;提出了数据管理的目标:安全、简单、高效地共享数据,并以此为线索贯穿全书内容,把知识碎片变得系统化,使得全书知识点有机融为一体。
循序渐进地融入大数据思维,讲述数据库应用、设计与实现技术,包括关系模型、数据保护、SQL语言与应用开发、数据库设计原理与大数据技术。帮助掌握数据管理的共性关键技术和方法,培养分析数据管理问题和解决数据管理问题的能力,为从事数据库系统、信息系统、Web系统、互联网+平台系统等数据库系统的研究、开发与应用奠定知识基础。
1、Html网页制作的简单基础。
2、C/C++或Java语言程序设计基础。
1、在线讨论与课堂交流(10%)。根据大家参与在线讨论,发帖和回帖的数量计算,水贴不记入总数。
2、单元测验(70%)。每单元安排一次测验。每个单元测验可以做无数次,以前六次的最高分计入成绩。
3、期末测验(20%)。将根据课程内容安排期末测验,题型包括选择、判断。
课程总成绩大于等于60分,即可获得合格证书,总分大于等于80分,可以获得优秀证书 。 证书为认证证书(可查询验证的电子版和纸质版),可以在课程结束后根据需要进行申请。
证书发放工作由爱课程网负责,有关问题请咨询:010-58556579。
[1] 党德鹏. 数据库应用、设计与实现. 北京: 清华大学出版社, 2017.3
(电子书:https://lib-nuanxin.wqxuetang.com/#/Book/3187154 只需简单注册即可直接登录访问)
[2] 党德鹏. 数据密集系统原理与设计(MySQL). 北京: 清华大学出版社
[3] D. Dang, Y. Liu, X. Zhang and S. Huang, "A Crowdsourcing Worker Quality Evaluation Algorithm on MapReduce for Big Data Applications," in IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7, pp. 1879-1888, 1 July 2016.(CCF A)
[4] Shaofei Wang, Depeng Dang,Incentive Mechanism for the Listing Item Task in Crowdsourcing, Information Sciences,
Volume 512, February 2020, Pages 80-95,ISSN 0020-0255
(Top;CiteScore: 6.90;Impact Factor:5.524;5-Year Impact Factor: 5.305)
[5] Xin Hu, Depeng Dang, Yingting Yao, Luting Ye, Natural language aggregate query over RDF data, Information Sciences, Volumes 454–455, 2018, Pages 363-381,ISSN 0020-0255
(Top,CiteScore: 6.90;Impact Factor: 5.524;5-Year Impact Factor: 5.305)
[6] Xinxin Wang, Depeng Dang, Zixian Guo. Evaluating the crowd quality for subjective questions based on a Spark computing environment. Future Generation Computer Systems,Volume 106,2020,Pages 426-437,ISSN 0167-739X,https://doi.org/10.1016/j.future.2020.01.010.
(Top;CiteScore: 6.30;Impact Factor: 5.768;5-Year Impact Factor: 5.670)
[7] Shihang Huang, Ying Liu, Depeng Dang,Burst topic discovery and trend tracing based on Storm,Physica A: Statistical Mechanics and its Applications, Volume 416,2014,Pages 331-339
(SCI CiteScore: 2.82;Impact Factor: 2.500;5-Year Impact Factor: 2.464)
[8] Dang Depeng, Liu Yunsheng,Concurrency control in real-time broadcast environments,Journal of Systems and Software,Volume 68, Issue 2,2003,Pages 137-144
(SCI:CiteScore: 4.25;Impact Factor: 2.559;5-Year Impact Factor: 2.774)
[10] Hu, Xin; Liu, Zhijie;Yao, Yingting;Wang, Nan;Dang, Depeng.Crowdsourcing Model Research for the Identification of Post-Earthquake Rescue Objects. Journal of Earthquake Engineering,23(5):863-881,2019. (IF:2.754)
(1)实验中用到的软件从哪里获取?
答:如下所列,
PostgreSQL:https://www.postgresql.org/download/windows/
PostgreSQL11.5/10.10 (187MB,含图形化界面),Windows X86-64位
MySQL:https://www.MySQL.com/downloads
Oracle:https://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html ;
https://www.oracle.com/technetwork/cn/products/express-edition/downloads/index.html
SQLServer:https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads#
Java:https://www.oracle.com/technetwork/java/javase/downloads/
Eclipse jdk:https://www.eclipse.org/downloads/
Apache Tomcat:https://tomcat.apache.org/
Dev-C++:https://sourceforge.net/projects/orwelldevcpp/;
https://bloodshed-dev-c.en.softonic.com/
ODBC:https://odbc.postgresql.org/
JDBC:https://jdbc.postgresql.org/download.html
(2)课程有哪些新颖之处?
答:课程有如下“六新”。
“新知识”:纳入了数据管理技术最新发展,融入大数据技术最新进展和数据管理技术发展趋势。
“新认识”:对传统数据库课程知识点即旧知识有新的、更深刻的认识。站在大数据管理的角度,拓展传统数据库关键技术方法,乃大数据时代数据库教学的尝试和实践;梳理了数据保护知识体系。
“新结构”:重新梳理了课程知识体系结构。以安全、简单、高效地共享数据这个总目标为线索贯穿全书知识点;先讲语言,让学生通过上机使用数据库,对数据库有直观了解,再讲数据库设计,最后讲实现,由浅到深,由外到里,便于理解;研磨了与相关课程联系,实现无缝平滑衔接。
“新案例”:以应急管理和网络考试系统为教学案例,实施案例驱动的教学;围绕“致敬英雄楷模,立志报效祖国”,构建“年度感动中国人物数据库”、“国家表彰数据库”等实验数据库案例,传播正能量,传播先进思想文化。
“新习题”:形成了完善的特色习题集,包括随堂练习、单元测试、期末测验等,有整套的题集。
“新模式”:建立了增量式实验组织模式,习新温故,迭代前行;面向互联网提供整套的实验指导书、实验讲解ppt、实验报告要求及提纲、实验报告样板、实验报告评分标准细则、学生实验碰到的各种问题及讨论答疑,可有效实施增强混合学习。配合网上学习,针对实验操作、课程重点和难点适时穿插视频交互式直播进行讲解和答疑。
(3)课程调度是怎样的?
周次 | 时间 | 视频/随堂练习/单元测验 | 实验 | 视频 |
1 | 9月7日 上午10:00 | (网)1.1 数据库 | 实验一 软件安装 实验二 认识数据库 | 9月7日18:00 |
(网)1.2 数据库系统 | ||||
(网)1.3 数据库管理系统 | ||||
(网)1.4 数据管理趋势 | ||||
2 | 9月14日 上午10:00 | (网)2.1 关系结构与约束 | 实验三数据库/表基本操作 | 9月14日18:00 |
(网)2.2 基本关系代数 | ||||
(网)2.3 附加关系代数 | ||||
(网)2.4 扩展关系代数 | ||||
3 | 9月21日 上午10:00 | (网)3.1 SQL概述 | 实验四 数据定义与修改 | 9月21日18:00 |
(网)3.2数据定义与修改 | ||||
4 | 9月28日 上午10:00 | (网)3.3单表查询 | 实验五 简单数据查询 | 9月28日18:00 |
5 | 10月5日 | 十一放假 |
|
|
6 | 10月12日 上午10:00 | (网)3.4联接查询 (网)3.5嵌套查询 | 实验六 高级数据查询 | 10月12日18:00 |
7 | 10月19日 上午10:00 | (网)4.1应用体系结构 | 实验七 嵌入式pgSQL | 10月19日18:00 |
(网)4.2 嵌入式pgSQL | ||||
8 | 10月26日 上午10:00 | (网)4.3 JDBC编程 | 实验八 JDBC与函数 | 10月26日18:00 |
(网)4.4函数 | ||||
9 | 11月2日 上午10:00 | (网)5.1 数据保护 (网)5.2 视图 (网)5.3 访问控制 | 实验九 python与函数 实验十视图与访问控制 | 11月2日18:00 |
10 | 11月9日 上午10:00 | (网)5.4 完整性约束 | 实验十一完整性约束与触发器 | 11月9日18:00 |
(网)5.5 触发器 | ||||
11 | 11月16日 上午10:00 | (网)5.6 事务 (网)5.7 加密 | 实验十二 事务与加密 | 11月16日18:00 |
12 | 11月23日 上午10:00 | (网)6.1数据库设计方法和生命周期 | 实验十三 索引与查询优化 | 11月23日18:00 |
(网)6.2.1 E-R模型元素 | ||||
(网)6.2.2 基本E-R图设计 | ||||
(网)6.3基本E-R图转换为关系模式 | ||||
13 | 11月30日 上午10:00 | (网)6.4扩展E-R图及其转换 | 实验十四数据库建模 | 11月30日晚18:00 |
(网)6.5 大数据E-R图及其转换 | ||||
14 | 12月7日 上午10:00 | (网)7.1 函数依赖 | 实验十五 综合应用 | 12月7日晚18:00 |
(网)7.2 模式分解 | ||||
15 | 12月14日 上午10:00 | (网)7.3范式 | ||
(网)7.4规范化 | ||||
(网)7.5大数据与反规范化 | ||||
16 | 12月21日 上午10:00 | (网)11.1 大数据及其特征 | ||
(网)11.2 大数据存储技术 | ||||
(网)11.3 大数据计算 |
|
| ||
(网)11.4 大数据应用 | ||||
17~19 | MOOC期末测验 |
(4)学习 “数据库系统原理”课程需要哪些预备知识?
答:只需要有网页制作的简单经验和程序设计的简单基础就可以。
(5)对学好“数据库系统原理”课程有哪些建议?
答:及时关注课程平台和讨论区,积极参与讨论;在视频学习的基础上,认真完成随堂练习和单元测验,并仔细完成实验操作与编程。
(6)需要时如何联系助教或老师?
答:请发邮件,1071705797@qq.com;654215419@qq.com;784152788@qq.com。