高等代数选讲
分享
课程详情
课程评价
spContent=高等代数是数学专业的重要基础课,本课程是高等代数课程内容的加深与提高,聚焦重点和难点,帮助学习者更系统透彻地掌握基本的代数理论和抽象严格的代数方法,并帮助考研学生加深对课程内容的理解,掌握解题方法及技巧,增强应用能力。
—— 课程团队
课程概述

本课程内容包括:多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、内积空间等。对基础知识进行梳理,对基本方法和技巧进行提炼和拓宽,并适当介绍线性代数理论的进一步的相关知识,以拓宽知识面,为进一步学习相关后继课程打下基础,并培养学习者具备一定的数学研究能力。


授课目标

《高等代数选讲》是《高等代数》课程内容的进一步加深与提高,以帮助学生掌握系统的代数理论和代数方法,并帮助考研学生进一步了解高等代数的相关结果和方法。

课程大纲

第一章 多项式

单元测试

1.1 数域P上的一元多项式环

1.2 整除、互素、最大公因式

1.3 因式分解理论

1.4 多项式的根

单元作业

第二章 行列式

单元测试

2.4 分块矩阵的行列式

2.2 行列式计算的一般方法

2.1 行列式的定义和性质

2.3 典型行列式

单元作业

第三章 线性方程组

第三章测试题

3.3 线性方程组的解

3.1 线性方程组的基本内容

3.2 向量组的线性相关性

第三章作业

第四章  矩阵

第四章测试题

4.5 矩阵的特征值和特征向量

4.2 矩阵的秩与矩阵的分解

4.3 矩阵的分块

4.1 矩阵的基本概念及运算

4.4 矩阵的逆与广义逆

第四章作业

第五章  二次型

5.3 正定二次型

单元作业

5.1 二次型的及其矩阵表示

5.2 标准形与规范形

单元测试

第六章  线性空间

6.2 线性空间的维数与基

6.1 线性空间的定义及简单性质

6.3 线性空间的子空间与线性空间的同构

第六单元测试

第六单元作业

第七章  线性变换

7.1 线性变换及其矩阵

7.3 值域、核与不变子空间

7.2 线性变换的特征值与特征向量及对角化

第七章作业

第七章测试

第八章  λ-矩阵

第八章测试

8.2 矩阵相似的条件及相似标准形

8.1 λ-矩阵及等价标准形

第九章  欧几里得空间

第九章测试

9.1 欧几里得空间的定义及性质

9.4 正交变换与正交矩阵

9.5 对称变换与对称矩阵

9.2 标准正交基

9.3 子空间、正交补与同构

预备知识

需要学习者预先掌握北京大学《高等代数》(第四版)课程的基本内容,包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、内积空间等

证书要求

参考资料

[1] 朱世平,郭曙光,张勇,高等代数选讲,南京:南京大学出版社,2016.09. (2018年1月认定为江苏省重点教材)

[2] 北京大学数学系几何与代数教研室代数小组,《高等代数》(第四版),北京,高等教育出版社,2013.

[3] 丘维声,《高等代数》(上下册),大学高等代数课程创新教材,北京:清华大学出版社,2010.

[4] 陈利国,高等代数选讲,徐州:中国矿业大学出版社, 2002.

[5] 王正文,高等代数分析与研究,山东:山东大学出版社,1994.

[6] David C. Lay,  Stenen R. Lay, Judi J. Macdonald, Linear Algebra and Its Applications (5ed), London, Pearson, 2014.