山东大学

图片
课程概述

本课程主要讨论有限维线性空间的线性理论与方法,具有较强的逻辑性、抽象性与广泛的实用性,尤其在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值等已经成为技术人员经常遇到的课题。因此,本课程所介绍的方法广泛地应用于各个学科。


通过本课程的学习,使学习者获得应用科学中常用的矩阵方法,线性方程组、二次型等理论及其有关的基础知识,并具有熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力,从而为学习后继课程及进一步扩大数学知识面、提高数学素养奠定必要的基础。


为方便广大学习者,MOOC线性代数课程将更注重学习过程的引导和学习兴趣的培养,我们将传统意义的线性代数课程分成六个部分,共51讲。主要内容包括:行列式、矩阵、n维向量、线性方程组、相似对角形、二次型。内容以较小的颗粒形式呈现,力求更突出其精华,一次讲解1-2个知识点,使学习者更易于接受,更感兴趣;同时穿插思考题或测试题,引导学习者设疑提问,共同学习与解决问题。

证书要求

平时成绩占6%,期末考试占94%,按百分制计分,60分至84分为合格,85至100分为优秀。

预备知识

无。

授课大纲

线性代数导论一讲。

行列式七讲:

1.行列式概念的引进

2.n阶行列式

3.特殊行列式的计算

4.行列式的性质

5.行列式的计算

6.克莱姆法则

7.范德蒙行列式介绍

矩阵十五讲:

1.矩阵是什么?

2.几种特殊的矩阵

3.矩阵运算-1

4.矩阵运算-2

5.方阵的行列式

6.伴随矩阵

7.初等变换

8.矩阵的秩

9.初等矩阵

10.逆矩阵的定义及可逆条件

11.逆矩阵的性质及求法2

12.逆矩阵的求法3-4

13.分块矩阵

14.矩阵方程

15.矩阵习题课

n维向量九讲

1.向量及其线性运算

2.向量组的线性相关性

3.相关性判定定理

4.相关性判定定理4与5的证明

5.向量组的极大无关组与秩的定义

6.向量组的极大无关组与秩的求法

7.向量空间

8.向量组的正交性

9.向量组习题课

线性方程组六讲:

1.齐次线性方程组

2.基础解系的求法

3.非齐次方程组

4.含参数的方程组

5.方程组习题课

6.与方程组有关的证明题

相似对角形八讲:

1.矩阵的相似

2.特征值与特征向量的求法

3.特征值与特征向量的性质

4.一般矩阵的相似对角形

5.实对称矩阵特征值与特征向量的性质

6.实对称矩阵的相似对角化

7.相似对角化小结

8.相似对角化习题课

二次型五讲:

1.二次型及其矩阵

2.正交变换法化二次型为标准形

3.配方法化二次型为标准形

4.二次型的分类

5.二次型习题课


建议学时分配

章次    行列式   矩阵     向量    方程组   相似对角形   二次型    总学时      

学时    35    1214    69     68      913       47     4056     


参考资料

1.大学数学——线性代数,高等教育出版社,高等教育十五国家级规划教材,刘建亚主编,秦静、潘建勋(金辉)编,2003年1月第一版,2011年6月第二版。

2.Linear Algebra and Its Applications,David C. Lay,Addison-Weslwy,Fourth

edition,2012年。

3.大学数学学习指南—线性代数,山东大学出版社,刘建亚,吴臻主编,秦静、金辉编,2004年7月第一版,2012年8月第二版。

授课老师
秦静

秦静

教授

分享