哈尔滨工业大学

图片
课程概述

    概率论与数理统计是研究随机现象客观规律的数学学科。通过本课程的学习,使学生理解概率论与数理统计的基本概念,掌握它的基本理论和方法。从而使学生初步掌握处理随机问题的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

    本课程共8章36讲,内容包括随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理、数理统计的基本概念、参数估计和假设检验。



证书要求

单元测验占50%,论坛讨论占10%(注意:讨论得分需要回答课堂所留开放性问题才能取得),期末考试占40%, 按百分制计分,60分至79分为合格证书,80分至100分为优秀证书.


预备知识

微积分,线性代数。


授课大纲

第一章 随机事件与概率

    第1讲 随机事件

    1.1.1 必然现象与随机现象

    1.1.2 随机试验与事件、样本空间

    第2讲 事件的关系与运算

    第3讲 古典概率

    1.3.1 古典概率的定义与计算

    1.3.2 概率的性质

    4讲几何概率

    5 统计概率

    6 概率的公理化定义

第二章 条件概率与独立性

    第7讲 条件概率、乘法定理

  第8讲 全概率公式

  第9讲 贝叶斯公式

  第10讲 事件的独立性

  2.4.1 两个事件的独立性

  2.4.2 多个事件的独立性

    11 重复独立试验、二项概率公式

第三章 随机变量及其分布

    第12讲 随机变量的概念

   第13讲 离散型随机变量

  3.2.1 概率分布列

  3.2.2 0-1分布(伯努利分布、两点分布)

  3.2.3 二项分布

  3.2.4 泊松分布

  3.2.5 几何分布

  3.2.6 超几何分布

  第14讲 随机变量的分布函数

  第15讲 连续型随机变量

  3.4.1 连续型随机变量、概率密度

  3.4.2 均匀分布

  3.4.3 指数分布

  第16讲 正态分布

  第17讲 随机变量函数的分布

第四章 多维随机变量及其分布

   第18讲 多维随机变量及其分布函数、边缘分布函数

  第19讲 二维离散型随机变量

  第20讲 二维连续型随机变量

  4.3.1 概率密度及边缘概率密度

  4.3.2 二维均匀分布

  4.3.3 二维正态分布

  第21讲 随机变量的独立性

  第22讲 二维随机变量函数的分布

  4.5.1 和函数的分布

  4.5.2 瑞利分布

  4.5.3 max(X,Y)及min(X,Y)的分布

  第23讲 条件分布

第五章 随机变量的数字特征与极限定理

  第24讲 数学期望

  5.1.1 离散型随机变量的数学期望

  5.1.2 连续型随机变量的数学期望

  5.1.3 随机变量函数的数学期望

  5.1.4 数学期望的性质

  第25讲 方差

  5.2.1 方差的概念

  5.2.2 方差的性质

  第26讲 协方差和相关系数、矩

  第27讲 大数定律

  5.4.1 切比雪夫不等式

  5.4.2 大数定律

  第28讲 中心极限定理

第六章 数理统计的基本概念

  第29讲 总体与样本

  6.1.1 数理统计的基本问题

  6.1.2 总体

  6.1.3 样本

  第30讲 χ2分布,t分布和F分布

  6.2.1 χ2分布

  6.2.2  t分布

  6.2.3  F分布

  第31讲 统计量及抽样分布

第七章 参数估计

  第32讲 点估计

  7.1.1 矩估计法

  7.1.2 最大似然估计法

  7.1.3 鉴定估计量的标准

  第33讲 区间估计

  7.2.1 单个正态总体参数的区间估计

  7.2.2 两个正态总体参数的区间估计

第八章 假设检验

  第34讲 假设检验的基本概念

  8.1.1 问题的提出

  8.1.2 假设检验的基本思想

  8.1.3 假设检验中的两类错误

  第35讲 单个正态总体参数的显著性检验

  8.2.1 u检验

  8.2.2 t检验

  8.2.3 χ2检验

  第36 两个正态总体参数的显著性检验

  8.3.1  t检验(续)

  8.3.2  F检验


参考资料

王勇主编,方茹、周永春、李朝艳、田波平、王勇编.概率论与数理统计(第2版). 北京:高等教育出版社,2014.