材料力学
分享
课程详情
课程评价
spContent=材料力学是高等工科学校的一门技术基础课。通过对杆件强度、刚度与稳定性等知识的系统学习,构筑工程技术的知识基础,培养分析和解决问题的能力。以理论分析为基础,同时注重试验动手能力培养。淮海工学院材料力学教学在确保基础性的同时,也努力反映时代性与前沿性,并兼顾机械专业特色。
—— 课程团队
课程概述

材料力学(mechanics of materials

固体力学的一个分支,研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。   
     
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:
   
不发生断裂,即具有足够的强度
   
构件所产生的弹性变形应不超出工程上允许的范围,即具有足够的刚度
   
在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。对强度、刚度和稳定性这三方面的要求,有时统称为"强度要求";而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。   
   
为了确保设计安全,通常要求多用材料和用高质量材料;而为了使设计符合经济原则,又要求少用材料和用廉价材料。材料力学的目的之一就在于为合理地解决这一矛盾,为实现既安全又经济的设计提供理论依据和计算方法。  

发展简史

在古代建筑中,尽管还没有严格的科学理论,但人们从长期生产实践中,对构件的承力情况已有一些定性或较粗浅的定量认识。例如,从圆木中截取矩形截面的木梁,当高宽比为3:2时最为经济,这大体上符合材料力学的基本原理。  
     
随着工业的发展,在车辆、船舶、机械和大型建筑工程的建造中所碰到的问题日益复杂,单凭经验已无法解决,这样,在对构件强度和刚度长期定量研究的基础上,逐渐形成了材料力学。意大利科学家伽利略为解决建造船舶和水闸所需的梁的尺寸问题,进行了一系列实验,并于1638年首次提出梁的强度计算公式。由于当时对材料受力后会发生变形这一规律缺乏认识,他采用了刚体力学的方法进行计算,以致所得结论不完全正确。后来,英国科学家R.胡克在1678年发表了他根据弹簧实验观察所得的"力与变形成正比"这一重要物理定律(即胡克定律)。从18世纪起,材料力学开始沿着科学理论的方向向前发展。   
     
高速车辆、飞机、大型机械以及铁路桥梁等的出现,使减轻构件的自重成为亟待解决的问题。随着冶金工业的发展,新的高强度金属(如钢和铝合金等)逐渐成为主要的工程材料,从而使薄型和细长型构件大量被采用。这类构件的失稳破坏屡有发生,从而引起工程界的注意。这些因素成为构件刚度和稳定性理论发展的推动力。由于超高强度材料和焊接结构的广泛应用,低应力脆断和疲劳事故又成为新的研究课题,促使这方面研究迅速发展。   

研究内容

包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆压杆(见柱和拱)受弯曲(有时还应考虑剪切)的梁和受扭转的轴等几大类。杆中的内力有轴力剪力弯矩扭矩。杆的变形可分为伸长缩短挠曲扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类:
  
线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。
  
几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。
  
物理非线性问题。在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理克罗蒂-恩盖塞定理或采用单位载荷法等。   
     
在许多工程结构中,杆件往往在复杂载荷的作用或复杂环境的影响下发生破坏。例如,杆件在交变载荷作用下发生疲劳破坏,在高温恒载条件下因蠕变而破坏,或受高速动载荷的冲击而破坏等。这些破坏是使机械和工程结构丧失工作能力的主要原因。所以,材料力学还研究材料的疲劳性能、蠕变性能和冲击性能。

研究方法

实际构件一般比较复杂,研究必须分两步进行:先作简化假设,再进行力学分析

简化假设

在材料力学研究中,一般可把材料抽象为可变形固体。对可变形固体,可引入两个基本假设:
   
连续性假设,即认为材料是密实的,在其整个体积内毫无空隙。实际材料的内部空隙尺寸与整个构件的尺寸相比很小,因而在一般情况下,这一假设是合理的。

   
均匀性假设,即认为从材料中取出的任何一个部分,不论体积如何,在力学性能上都是完全一样的。这里所说的材料的力学性能是指所有组成部分性能的统计平均量。大多数材料的内部组成和性能基本均匀,所以这一假设从统计意义上说也是成立的。
     
此外,通常还要作下列几个工作假设:
   
小变形假设,即假定物体变形很小,从而可认为物体上各个外力和内力的相对位置在变形前后不变。对大多数金属材料来说,这一假设是合理的,但对能够产生大变形的物体(如橡皮和塑料等)以及对压杆的稳定性问题则不适用。
   
线弹性假设,即在小变形和材料中应力不超过比例极限两个前提下,可认为物体上的力和位移(或应变)始终成正比。这个假设使计算大为简化,而且在这一假设的基础上,一个较复杂的问题可以分解为一些简单的问题。
   
各向同性假设,即认为材料在各个方向的力学性能都相同。根据这一假设可以简化应力-应变关系。对大多数金属来说,这一假设是成立的,但对很多复合材料则不能成立,因为它们具有明显的各向异性性质。
   
平截面假设,认为杆的横截面在杆件受拉伸、压缩或纯弯曲而变形以及圆杆横截面在受扭转而变形的过程中,保持为刚性平面,并与变形后的杆件轴线垂直。这一假设使杆的无限自由度问题化为有限自由度问题。   

力学分析

对构件进行力学分析,首先应求得构件在外力作用下各截面上的内力。某截面上的内力是指分布在该截面上的力的合力。内力可通过取分离体利用平衡条件来确定。其次应求得构件中的应力和构件的变形。对此,单靠静力学的方法就不够了,还需要研究构件在变形后的几何关系以及材料在外力作用下变形和力之间的物理关系。根据几何关系、物理关系和平衡关系,可以解得物体内的应力、应变和位移。把它们和材料的允许应力、允许变形作比较,即可判断此物体的强度是否符合预定要求。若材料处于多向受力状态,则应根据强度理论来判断强度。   
     
同弹性力学和塑性力学相比,材料力学的研究方法显得粗糙。用材料力学方法计算构件的强度,有时会由于构件的几何外形或作用在构件上的载荷较复杂而得不到精确的解,但由于方法比较简便,又能提供足够精确的估算值作为工程结构初步设计的参考,所以常为工程技术人员所采用。


课程大纲

《材料力学A》课程教学大纲

课程代码:2101050031

课程名称:材料力学A

英文名称  Mechanics of Materials

学  分:      4

总 学 时:64           (其中:理论学时:56 实验(上机)学时:8

先修课程:2101050411理论力学A 

后续课程:2101010233机械设计A                 

适用对象:适用于本二机械设计制造及其自动化专业的学生

一、             课程简介

《材料力学》是固体力学的一个分支,它研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的强度、刚度和稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。课程由理论讲授和实验两部分组成,要求学生通过本课程的学习,掌握材料力学对实际构件的基本研究方法,即先作基本简化,再进行力学分析,从而解得物体内的应力、应变和位移,并根据强度理论来判断强度。以理论分析为基础,培养学生的实验动手能力;发挥其它课程不可替代的综合素质教育作用。   

二、课程目标

结合专业培养目标,提出本课程要达到的目标。这些目标包括:

1.知识水平教学目标  通过本课程的教学,使学生对材料力学的基本概念和基本分析方法有明确的认识,能画出杆件在基本变形下的内力图,进行应力和位移、强度和刚度的计算,会计算轴向受压杆的临界力和临界应力。并了解低碳钢和灰口铸铁的基本力学性能及其测定方法、应力状态理论和组合变形下杆件的强度计算及电测实验应力分析的基本原理和方法。(对应毕业要求1.22.3

2.能力培养目标  培养学生将工程实际问题提炼成力学问题(即力学建模)从而进行求解的能力以及实验技能,利用此课程对学生进行机械工程及自动化专业综合教育作用,并为后续课程的学习打下坚实的基础和形成专业的思维方式。(对应毕业要求4.112.1

3.素质培养目标  能艰苦奋斗,有踏实的科学精神、积极向上的学风和对机械工程及自动化专业知识的喜欢及对社会的奉献精神。(对应毕业要求8.112.2

 

三、教学内容及组织

主要教学内容:

1.    绪论(讲课2学时)

掌握内力、应力和应变的概念;了解截面法的概念;了解材料力学A的任务、研究内容、杆件变形的基本形式和材料的基本假设。

重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。

难点:截面法、应力和应变的概念。

1.1材料力学A的任务。

1.2变形固体的基本假设。

1.3外力及分类。

1.4内力、截面法和应力的概念。

1.5变形与应变。

1.6杆件变形的基本形式。

2.    拉伸和压缩(讲课6学时,实验2学时)

熟练掌握截面法求解轴力、绘制轴力图;熟练掌握求解横截面上的应力;熟练掌握用胡克定律求解轴向拉压杆的变形量;会进行强度计算。

重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;拉(压)杆的变形计算。

难点:对内力概念的理解。

2.1轴向拉伸和压缩概念。

2.2内力,轴力、轴力图。

2.3应力

2.4拉压杆的变形,胡克定律。

2.5应变能。

2.6材料在拉压的力学性能。

2.7强度条件,安全因数,许用应力。

2.8应力集中概念。

3.    剪切(讲课2学时)

掌握剪切变形的受力特点、变形特点;掌握剪切强度计算的方法;掌握挤压变形的特点及其强度计算。

重点:剪切及挤压的实用计算。

难点:几种变形的综合强度计算。

3.1剪切与挤压的概念。

3.2剪切与挤压的的实用计算。

4.    扭转(讲课4学时,实验2学时)

熟练掌握扭矩的概念、扭矩正负号的规定;熟练掌握扭矩的求法及扭矩图的绘制;熟练掌握圆轴扭转的强度及变形计算。

重点:圆轴扭转时切应力和强度计算;圆轴扭转的变形和刚度计算。

难点:圆轴扭转时切应力公式推导和应力分布。

4.1扭转概念和实例。

4.2外力偶矩,扭矩及扭矩图。

4.3纯剪切

4.4圆杆扭转时的应力、强度条件。

4.5圆杆扭转时的变形、刚度条件。

4.6非圆截面扭转概述

5.    平面图形的几何性质(讲课2学时)

了解静矩、形心、惯性矩、惯性积的定义公式;熟练掌握简单图形的惯性矩的计算;惯性矩的平行移轴公式;组合图形的惯性矩计算。

重点:惯性矩的计算。

难点:惯性矩的计算。

5.1静矩和形心。

5.2惯性矩和惯性半径。

5.3惯性积。

5.4平行移轴公式。

5.5转轴公式、主惯性轴。

6.    弯曲(讲课12学时,实验2学时)

熟练掌握剪力与弯矩的求解方法;熟练掌握绘制剪力图与弯矩图的方法;熟练掌握弯曲正、切应力的计算方法;掌握梁的变形和位移,挠度和转角的概念;掌握弯曲梁变形的求法;掌握用叠加法求弯曲变形,用变形比较法解超静定梁。了解提高抗弯曲强度、刚度的措施。

重点:剪力方程和弯矩方程、剪力图和弯矩图;梁弯曲时正应力和强度计算;叠加法求弯曲变形;用变形比较法解超静定梁。

难点:绘制剪力图和弯矩图、剪力和弯矩间的关系;梁弯曲时应力公式推导和应力分布;积分法和叠加法求弯曲变形;用变形比较法解超静定结构。

6.1弯曲概念和实例。

6.2弯矩和剪力。

6.3剪力和弯矩方程、剪力图、弯矩图。

6.4载荷集度、剪力和弯矩的微分关系。

6.5纯弯曲。

6.6弯曲时的正应力、正应力强度条件。

6.7弯曲时的切应力,切应力强度条件。

6.8梁的合理设计。

6.9梁弯曲的位移、挠度和转角的概念。

6.10积分法求变形。

6.11叠加法求位移。

6.12梁的刚度校核。

6.13简单超静定梁。

6.14减小弯曲变性的措施。

7.    应力、应变分析基础(讲课6学时)

理解应力状态的概念;掌握主平面、主应力的概念;掌握平面应力状态应力分析、主应力计算;了解平面应力状态分析的图解法,理解广义胡克定律

重点:一点应力状态的表示;平面应力状态分析的解析法和图解法;广义虎克定律。

难点:一点应力状态的概念;主应力方位确定。

7.1概述。

7.2平面应力状态的应力分析、解析法和图解法。

7.3空间应力状态。

7.4应力和应变关系。

7.5空间应力状态应变能密度。

8.    强度理论(讲课2学时)

了解强度理论的概念,掌握常用的四种强度理论;了解莫尔强度理论

重点:常用的四种强度理论。

难点:常用的四种强度理论应用。

8.1四种常用的强度理论及相当应力。

8.2莫尔强度理论。

8.3各种强度理论的应用。

9.    组合变形下的强度计算(讲课4学时,实验2学时)

熟练掌握两种组合变形形式的强度计算

重点:用叠加法求解组合变形杆件的强度。

难点:两种组合变形的强度条件的实际应用。

9.1 概述。

9.2拉(压)与弯曲。

9.3扭转与弯曲。

10.能量法(讲课4学时)

理解功能原理,掌握杆件变形能的计算,熟练应用卡氏定理、单位荷载法求结构位移;掌握图乘法、莫尔定理应用;掌握能量法解超静定问题。

重点:杆件变形能计算;功的互等定理和位移互等定理;卡氏定理;单位荷载法;图乘法、莫尔定理应用。

难点:莫尔定理的应用。

10.1概述。

10.2杆件变形能的计算。

10.3应变能的普遍表达式。

10.4互等定理。

10.5卡氏定理。

10.6虚功原理。

10.7单位荷载法、莫尔积分。

10.8计算莫尔积分的图乘法。

11.静不定系统(讲课2学时)

熟练掌握力法求解静不定问题;掌握对称与反对称结构的性质。

重点: 用力法解简单超静定结构。

难点:基本结构的选取;内力超静定问题。

11.1超静定结构概述。

11.2用力法解超静定结构。

11.3对称与反对称结构的利用。

12.压杆稳定(讲课4学时)

明确稳定平衡、不稳定平衡和临界力的概念,掌握两端铰支压杆临界力计算公式推导。理解长度系数的力学意义,熟练掌握四种常见约束形式下细长压杆的临界力计算。明确压杆柔度、临界应力概念和临界应力总图。掌握大柔度压杆的判定方法和稳定性计算。

重点: 压杆稳定的概念;欧拉公式的推导;适用范围和应用;压杆稳定校核。

难点:欧拉公式的推导。

12.1压杆稳定的概念。

12.2两端铰支和其它支座压杆的欧拉公式。

12.3欧拉公式的适用范围,临界应力总图。

12.4压杆稳定校核。

12.5提高稳定的措施。

13.动载荷(讲课4学时)

掌握杆件匀加速直线运动或匀速转动时的动应力计算;熟练掌握构件受冲击荷载作用时动应力计算;理解动荷系数概念。

重点: 冲击时构件的应力、变形和强度计算。

难点:综合性问题的计算。

13.1等加速度直线运动应力计算。

13.2 等速转动动应力计算。

13.3冲击载荷作用的动应力计算。

13.4冲击韧性。

14.疲劳强度(讲课2学时)

了解疲劳破坏的机理和特点,掌握交变应力的应力幅、平均应力和循环特性的计算;明确材料疲劳极限的概念,了解其测试原理和方法;掌握结构的疲劳破坏计算。

重点: 交变应力的概念;疲劳破坏的特点;影响构件持久极限的因素;对称循环下疲劳强度计算。

难点:材料的疲劳极限。

14.1交变应力与疲劳失效。

14.2交变应力的循环特性。

14.3持久极限。

14.4影响持久极限的因素。

14.5对称循环下的构件疲劳强度计算。

14.6弯扭组合交变应力的强度计算。

3.课程的实践教学内容

本课程安排以下实验:

实验1.拉伸和压缩试验

实验2.扭转试验

实验3.纯弯曲梁正应力测定

实验4.薄壁圆筒弯扭组合变形应变测定

 

附注:实验教学安排见《材料力学A》实验教学大纲

四、         建议学时分配表

1.理论课学时分配表

序号

课程内容

学 时 分 配

对应课程

目标

讲 授

习题课

 

 

1

绪论

2

 

 

2

13

2

拉伸和压缩

6

 

2

8

123

3

剪切

2

 

 

2

123

4

扭转

4

 

2

6

123

5

平面图形几何性质

2

 

 

2

13

6

弯曲(内力、应力、变形)

12

 

2

14

123

7

应力应变分析基础

6

 

 

6

123

8

强度理论

2

 

 

2

123

9

组合变形

4

 

2

6

123

10

能量法

4

 

 

4

123

11

静不定系统

2

 

 

2

123

12

压杆稳定

4

 

 

4

123

13

动载荷

4

 

 

4

123

14

疲劳强度

2

 

 

2

13

 

 

 

 

 

 

 

 

56

 

8

64

 

 

2.实验项目名称和学时分配

序号

实验项目名称

实验学时

实验要求

实验

类型

每组

人数

对应课程

目标

1

拉伸和压缩实验

2

必修

验证性

4

134

2

扭转实验

2

必修

验证性

4

134

3

纯弯曲梁正应力测定

2

必修

验证性

2

2345

4

薄壁圆筒弯扭组合变形应变测定

2

必修

综合性

2

2345

 

五、课程考核

以期末考试成绩为主,并将它与平时成绩(考勤和作业成绩)、实验成绩综合考核。

期末考试为闭卷笔试,满分100分;考试内容为本课程所讲授的重点和难点。

总成绩=平时考核成绩×10%+期末考试成绩×70%+实验成绩×20%

平时考核包括作业完成情况、出勤情况及课堂积极性。

平时考核包括作业完成情况50分)、出勤情况及课堂积极性(50)。

五、         教学说明

先修课程有:高等数学、理论力学A等课程,在进行理论教学的同时,同步进行相关材料力学A的实验。

六、推荐教材和教学参考书  

  材:《材料力学》(I)、(II),刘鸿文主编,高等教育出版社,2016年第5版。

参考书:《材料力学解题指导及习题集》,清华大学材料力学教研室编,清华大学出版社,2013年第3版。

 

执笔人:刘军

  定:郭廷良


预备知识

高等数学;理论力学

证书要求

以期末考试成绩为主,并将它与平时成绩(考勤和作业成绩)、实验成绩综合考核。

期末考试为闭卷笔试,满分100分;考试内容为本课程所讲授的重点和难点。

总成绩=平时考核成绩×10%+期末考试成绩×70%+实验成绩×20%

平时考核包括作业完成情况、出勤情况及课堂积极性。

平时考核包括作业完成情况50分)、出勤情况及课堂积极性(50)。


参考资料

  材:《材料力学》(I)、(II),刘鸿文主编,高等教育出版社,2016年第5版。

参考书:《材料力学解题指导及习题集》,清华大学材料力学教研室编,清华大学出版社,2013年第3版。